skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zen_Vasconcellos, César A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This article focuses on the implications of a noncommutative formulation of branch‐cut quantum gravity. Based on a mini‐superspace structure that obeys the noncommutative Poisson algebra, combined with the Wheeler–DeWitt equation and Hořava–Lifshitz quantum gravity, we explore the impact of a scalar field of the inflaton‐type in the evolution of the Universe's wave function. Taking as a starting point the Hořava–Lifshitz action, which depends on the scalar curvature of the branched Universe and its derivatives, the corresponding wave equations are derived and solved. The noncommutative quantum gravity approach adopted preserves the diffeomorphism property of General Relativity, maintaining compatibility with the Arnowitt–Deser–Misner Formalism. In this work we delve deeper into a mini‐superspace of noncommutative variables, incorporating scalar inflaton fields and exploring inflationary models, particularly chaotic and nonchaotic scenarios. We obtained solutions to the wave equations without resorting to numerical approximations. The results indicate that the noncommutative algebraic space captures low and high spacetime scales, driving the exponential acceleration of the Universe. 
    more » « less
  2. Abstract This article focuses on a recently developed formulation based on the noncommutative branch‐cut cosmology, the Wheeler‐DeWitt (WdW) equation, the Hořava–Lifshitz quantum gravity, chaotic and the coupling of the corresponding Lagrangian approach with the inflaton scalar field. Assuming a mini‐superspace of variables obeying the noncommutative Poisson algebra, we examine the impact of the inflaton scalar field on the evolutionary dynamics of the branch‐cut Universe scale factor, characterized by the dimensionless helix‐like function . This scale factor characterizes a Riemannian foliated spacetime that topologically overcomes the primordial singularities. We take the Hořava–Lifshitz action modeled by branch‐cut quantum gravity as our starting point, which depends on the scalar curvature of the branched Universe and its derivatives and which preserves the diffeomorphism property of General Relativity, maintaining compatibility with the Arnowitt–Deser–Misner formalism. We then investigate the sensitivity of the scale factor of the branch‐cut Universe's dynamics. 
    more » « less